al., 1977b). The results of this report demonstrate that intestinal absorption of hesperetin derivatives can be reduced by nearly two orders of magnitude by increasing molecular weight and charge through O-sulfoalkylation and "dimerization". The findings also prove that absorption levels of approximately 1% can be obtained with nonpolymeric, water-soluble derivatives with molecular weights of about 1000 and charged functional groups. The data in Table II also demonstrate, indirectly, the nearly complete stability of the O-sulfoalkylated hesperetin derivatives toward the intestinal microflora metabolism typical of flavonoid compounds and previously demonstrated for hesperetin- $3^{-14}C$ (Honohan et al., 1976) and neohesperidin DHC (Gumbmann et al., 1976). In the case of the 4-O-sulfopropylhesperetin dihydrochalcone- β -¹⁴C, stability was demonstrated by in vitro anaerobic incubations with rat cecal microflora (Table III) and by the absence of ¹⁴C-labeled phenylpropanoic acids in the urines of orally dosed animals (Table IV). It seems clear that the higher molecular weight DHC derivatives are also highly resistant to microbial degradation.

ACKNOWLEDGMENT

The authors thank T. M. Parkinson and N. M. Weinshenker for their support of this work. The skillfull technical assistance of S. C. Halladay, T. Honohan, B. A. Ryerson, C. T. Seitz, and P. C. Wang is gratefully acknowledged.

LITERATURE CITED

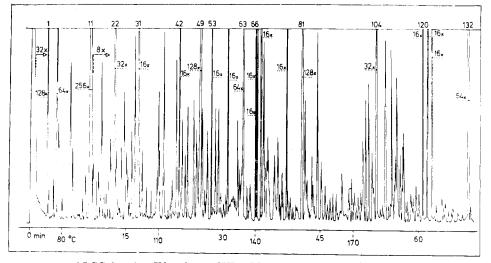
Berg, J. W., in "Persons at High Risk of Cancer", Fraumeni, J. F., Ed., Academic Press, New York, N.Y., 1975, Chapter 13. Cameron, G. R., Oakley, C. L., J. Pathol. Bacteriol. 35, 769 (1932). Chadwick, V. S., Phillips, S. F., Hofmann, A. F., Gastroenterology

- 73, 241 (1977). Crosby, G. A., DuBois, G. E., Hale, R. L., Halladay, S. C., Ste-
- phenson, R. A., Wang, P. C., Wingard, R. E., Jr., in "Sweeteners and Dental Caries", Shaw, J. H., Roussos, G. G., Ed., Information Retrieval, London, 1978a, pp 341-366.

- Crosby, G. A., DuBois, G. E., Wingard, R. E., Jr., in "Drug Design", Vol. VIII, Ariëns, E. J., Ed., Academic Press, New York, N.Y., 1978b, Chapter 5.
- Crosby, G. A., DuBois, G. E., Wingard, R. E., Jr., in "Flavor: Its Chemical, Behavioral, and Commercial Aspects", Apt, C., Ed., Westview Press, Boulder, Colorado, 1978c, pp 51-66.
- Crosby, G. A., Wingard, R. E., Jr., in "Developments in Sweeteners", Hough, C. A. M., Parker, K. J., Vlitos, A. J., Ed., Applied Science, London, 1978, in press.
- Doak, S. M. A., Simpson, B. J. E., Hunt, P. F., Stevenson, D. E., Toxicology 6, 139 (1976).
- DuBois, G. E., Crosby, G. A., Saffron, P., Synth. Commun. 7, 44 (1977a).
- DuBois, G. E., Crosby, G. A., Stephenson, R. A., Wingard, R. E., Jr., J. Agric. Food Chem. 25, 763 (1977b).
- Durst, T., du Manoir, J., Can. J. Chem. 47, 1230 (1969).
- Gumbmann, M. R., Gould, D. H., Robbins, D. J., Booth, A. N., presented at the Citrus Research Conference, Pasadena, Calif., Dec 8, 1976.
- Halladay, S. C., Enderlin, F. E., Parkinson, T. M., Honohan, T., Drug Chem. Toxicol. 1, 203 (1978).
- Hathway, D. E., in "Advances in Food Research", Vol. 15, Academic Press, New York, N.Y., 1966, p 1.
- Honohan, T., Hale, R. L., Brown, J. P., Wingard, R. E., Jr., J. Agric. Food Chem. 24, 906 (1976).
- Howe, G. R., Burch, J. D., Muller, A. B., Morrison, B., Gordon, P., Weldon, L., Chambers, L. W., Fodor, G., Winsor, G. M., Lancet 2, 578 (1977).
- Kramers, P. G. N., *Mutat. Res.* **32**, 81 (1975). Parkinson, T. M., Honohan, T., Enderlin, F. E., Halladay, S. C., Hale, R. L., de Keczer, S. A., Dubin, P. L., Ryerson, B. A., Read, A. R., Food Cosmet. Toxicol., in press (1978).
- Shaw, J. H., Roussos, G. G., Ed., "Sweeteners and Dental Caries", Information Retrieval, London, 1978.
- Seitz, C. T., Wingard, R. E., Jr., J. Agric. Food Chem. 26, 278 (1978).
- Wright, A. S., Crowne, R. S., Hathway, D. E., Biochem. J. 95, 98 (1965)
- Yudkin, J., "Sweet and Dangerous", Wyden, New York, N.Y., 1972.

Received for review May 18, 1978. Accepted July 28, 1978.

Gas Chromatographic-Mass Spectrometric Investigation of Hop Aroma **Constituents in Beer**


Roland Tressl,* Lothar Friese, Friedrich Fendesack, and Hans Köppler

More than 110 aroma constituents of a German beer, which delivered a desirable, fine hops aroma, were identified and semiquantified by means of liquid-liquid extraction, liquid-solid chromatography, and capillary gas chromatography-mass spectrometry. Forty-five constituents (among them: esters, ketones, alcohols, ethers, terpenoids, and sesquiterpenoids) were characterized for the first time in beer. Forty-seven of the determined volatiles had been found in Spalter hops.

Many beer consumers prefer beers with a distinct hops flavor, whereby, in addition to hops bitter, a fine hops aroma is also desirable. The bitter character of beer is essentially determined by the isomerization of humulone into isohumulone. At the present there are few analytical reference points as to what extent the hops aroma constituents are transferred to beer. To date more than 150 constituents of the essential oil of hops are known (van Straten and de Vrijer, 1973); however, there are few indices as to the extent of their contribution of beer flavor. The presence of the major sesquiterpenes of hop oil could not be proved by the use of presently available techniques. This led to the assumption that oxygenated hop oil constituents which have sensory relevance are also not present in beer.

In 1967 Buttery and Black identified ethyl dec-4-enoate, ethyl deca-4,8-dienoate, 2-heptanone, and ethyl heptanoate

Lehrstuhl für Chemisch-technische Analyse der Technischen Universität Berlin und Forschungsinstitut für Chemisch-technische Analyse im Institut für Gärungsgewerbe und Biotechnologie, D-1000 Berlin 65, Seestrabe 13, Germany.

Figure 1. Gas chromatogram of LSC fraction IV; column CW-20M, 50 m (0.25 mm i.d.): 3-methyl-1-butanol (11); 7,7-dimethyl-6,8-dioxabicyclo[3.2.1]octane (22); hop ether (30); karahana ether (31); 2-acetylfuran (42); linalool (49); β -fenchyl alcohol (53); methionol acetate (53); 1-nonanol (63) (standard); α -terpineol (66); 2-phenylethyl acetate (81); humulene epoxide I (104); humulol (120); humulenol II (132).

as hop-derived components in an American beer. Drawert and Tressl (1972) characterized 15 hop oil constituents (among them: linalool, α -terpineol, nerol, caryophyllene) in a German beer. On the other hand, Sandra (1976) determined only some degradation products of humulones in a Belgium lager beer. In 1974 Shimazu et al. characterized humuladienone and the authors assumed that this constituent may be responsible for the hoppy aroma associated with beer. More than 30 terpenoids and sesquiterpenoids derived from hops were identified by Tressl and Friese (1976) in a German Pilsener beer, which possessed a distinct hoppy aroma. In the present study we investigated the aroma constituents of a Bavarian beer, brewed in Hallertau near Munich, which delivered a desirable, fine hops aroma.

MATERIALS AND METHODS

Sample Preparation. The aroma components of 40 L of a German beer (Pilsener) were enriched by liquidliquid extraction with pentane-methylene chloride (2:1). The extraction period was 24 h. The aroma extract was dried over Na_2SO_4 and then concentrated to a volume of 8 mL.

Adsorption Chromatography. Separation according to the polarity of components was carried out by liquidsolid chromatography. Extract (400 μ L) was placed on cooled columns (29 × 1 cm i.d.) filled with aluminum oxide (Merck 1078, activity IV) and silica gel (Merck 7734, activity II to III) (2:1). Six fractions (100 mL each) with solvents of increasing polarity were eluted: I, pentane (P); II, pentane-methylene chloride (P/MC) (9:1); III, P/MC (3:1), IV, pentane-ether (P/E) (9:1); V P/E (1:1); VI, ether.

The fractions were concentrated to a definite volume and analyzed by gas chromatography and capillary gas chromatography-mass spectrometry. Trace components were enriched by preparative gas chromatography.

Gas Chromatography. Gas chromatography conditions were as described by Tressl et al. (1978). One additional column was used for preparative separations. Column 3: 4 m (4 mm i.d.) glass, 10% FFAP on Chromosorb WAW/DMCS, 60-80 mesh; temperature program, 80-250 °C, 4 °C/min.

Capillary Gas Chromatography-Mass Spectrometry. See Tressl et al. (1978). Additional columns: 50-m glass capillary column (0.32 mm i.d.), coated with SF-96; temperature program, 70-190 °C, 2 °C/min.

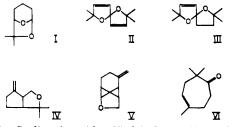
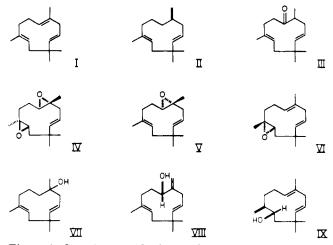



Figure 2. Cyclic ethers identified in beer: (I) 7,7-dimethyl-6,8-dioxabicyclo[3.2.1]octane; (II) 2,2,7,7-tetramethyl-1,6-dioxaspiro[4.4]nona-3,8-diene; (III) 2,2,7,7-tetramethyl-1,6-dioxaspiro[4.4]nona-3-ene; (IV) hop ether; (V) Karahana ether; (VI) karahanaenone.

Figure 3. Sesquiterpenoids identified in beer: (I) α -humulene; (II) β -humulene; (III) humuladienone; (IV) humulene dioxide; (V) humulene epoxide I; (VI) humulene epoxide II; (VII) humulol; (VIII) humulenol I; (IX) humulenol II.

RESULTS AND DISCUSSION

The aroma components of 40 L of a German draft beer (type: Pilsener) were enriched by liquid-liquid extraction with pentane-methylene chloride, yielding an aroma concentrate of 8 mL. The extract was separated on a mixture of silica gel-aluminum oxide (2:1) into six fractions. In our opinion, the combination of LSC and GLC is most effective in tracing essential constituents in a complex mixture. In beer the hop aroma constituents are

Table I.	Components	Characterized in 1	Beer

	compd	LSC	$I_{\rm K}$ (CW-20M)	M_{r}	approx concn, ppb
ester	S				
1		III	917	88	15000
2		II	1028	102	80
3	ethyl 2-methyl propionate	II	1047	116	480
4	3-methylbutyl acetate ^b	II, III	1126	130	6300
5	3-methylbutyl propionate	II	1184	144	15
6	3-methylbutyl 2-methylpropionate	I, II	1190	158	140
7	ethyl hexanoate	I, II II, III	1232	144	950
8 9	hexyl acetate 3-methylbutyl 3-methylbutanoate	II, III II	1266 12 9 2	$\frac{144}{172}$	$\begin{array}{c} 120 \\ 40 \end{array}$
10	2-methylpropyl hexanoate ^a	I	1292	$172 \\ 172$	40 25
11	heptyl acetate	II	1347	158	25 25
12		I, II	1431	$138 \\ 172$	1500
13	3-methylbutyl hexanoate	I, II I	1453	186	420
14	octyl acetate	ÎI	1469	172	30
15	furfuryl acetate	II, III	1524	140	60
16	2-methylbutyl octanoate ^a	II, III	1548	214	15
17	3-methylbutyl heptanoate	Î	1552	200	20
18	nonyl acetate ^{a}	ÎI	1570	186	20
19	ethyl decanoate	Î, II	1634	200	190
20	3-methylbutyl octanoate	I, -1	1658	$\frac{1}{214}$	830
21	ethyl benzoate	ÎI	1645	150	10
22	2-methylbutyl decanoate ^a	ÎÎ	1752	242	5
23	ethyl dodecanoate	ÎÎ	1833	228	30
24	3-methylbutyl decanoate	Î	1851	242	95
25	methionol acetate	ĪV	1613	148	25
26	3-methylbutyl dodecanoate ^a	I	2056	270	10
27	2-phenylethyl acetate	III, IV	1805	164	1625
28	2-phenylethyl propionate ^a	III	1890	178	10
29	2-phenylethyl 2-methylpropionate ^a	III	1935	192	15
30	2-phenylethyl 3-methylbutanoate ^a	III	1961	206	15
31	2-phenylethyl hexanoate	II, III	2136	220	75
32	2-phenylethyl octanoate	II, III	2335	192	150
33	ethyl cinnamate	IIÍ	2086	176	5
34	ethyl nicotinoate	v	1782	151	1400
35	ethyl dec-4-enoate ^c	II, III	1682	198	35
36	ethyl deca-4,8-dienoate ^c	III	1721	196	15
37	3-methylbutyl dec-4-enoate ^{a,c}	II	1908	240	20
38	ethyl nonenoate ^{a,c}	II	1524	186	45
39	methyl 4-methyl-hex-2-enoate ^{a,c}	II	1331	142	60
ketor	nes				
40	2-pentanone	IV	990	86	20
41	4-methyl-2-pentanone ^c	III, IV	1015	100	120
42	3-methyl-2-pentanone ^c	III, IV	1023	100	60
43	2-heptanone ^{a,c}	III	1190	114	110
44	2-octanone ^{a,c}	III	1283	128	10
45	6-methyl-5-hepten-2-one ^{a,c}	III, IV	1332	126	50
46	2-nonanone ^{a,c}	III	1385	142	30
47	2-undecanone ^{a,c}	III	1592	170	1
48	3-hydroxy-2-butanone	<u>V,</u> VI	1270	88	420
49	3-hydroxy-2-pentanone	VI	1345	102	50
	iols, phenols	37	1005	74	1000
50	2-methylpropanol	v	1085	74	4800
51 59	3-methylbutanol	v	1197	88	84000
52	2-methylbutanol	v			
53 54	pentanol	vv	1236	88	150
54 55	hexanol 3-hexenol ^a	vv	$\begin{array}{c} 1339\\ 1345 \end{array}$	$102 \\ 100$	330 25
55 56	2-hexenol ^a	vv	1345	$\begin{array}{c} 100 \\ 100 \end{array}$	25 20
50 57	1-octen-3-ol	v IV	1368	128	30
57 58	furfuryl alcohol	V			1200
58 59	methionol	vv	1640	98 106	320
59 60	2-phenylethanol	vv	1888	106	1800
61	2-phenyletnanol heptanol-2 ^c	v IV	1307	122	1800
61 62	octan- 2 -ol ^c		1307	133	15 5
63	nonan-2-ol ^c	IV IV	1405	$133 \\ 144$	5 10
63 64	decan-2-ol ^c	IV	1606	$144 \\ 158$	10 5
64 65	4-vinylguaiacol	V	2145	158	100
66	4-vinylgualacol 4-vinylphenol	vv	2145 2317	120	75
lacto		v	2017	120	10
67	4-butanolide	V, VI	1595	86	1300
68	4-butanolide	V, VI V	1669	114	20
69	4,4-dimethylbutan-4-olide ^c	v	1558	114	160
70	4,4-dimethyl-2-buten-4-olide ^c	v	1583	114	1750
71	4-heptanolide	v	1767	128	15
			T • • •		÷

Table I (Continued)

•	,					
73	4-nonanolide	v	1993	156	320	
74	4-decanolide	v	2096	170	20	
75	dihydroactindiolide ^{a,c}	v	2258	180	30	
othei	r constituents					
76	o-xylene	I	1136	106	20	
77	styrene	I	1248	104	70	
78	methylethylbenzene	I	1275	120	20	
79	naphthalene	I	1709	128	15	
80	benzaldehyde	III	1505	106	10	
81	2-phenylacetaldehyde	IV	1624	120	-5	
82	furfural	IV	1445	96	25	
83	2-acetylfuran	IV	1482	110	40	
84	.2-methyltetrahydrofuran-3-one ^a	IV	1251	100	25	
85	2-methyltetrahydrothiophen-3-one	III	1510	116	5	

^a Components identified for the first time in beer. ^b 3-Methylbutyl acetate and 2-methylbutyl acetate. ^c Components found in hops.

Table II. T	Terpenoids and	Sesquiterpenoids	Characterized in Beer
-------------	----------------	------------------	-----------------------

	component	LSC	I _K (CW-20M)	M_{r}	mass spectral data	approx conen, ppb
86	2,2,7,7-tetramethyl-1,6- dioxaspiro[4.4]nona- 3-ene ^a	IV	1236	182	109, 113, 167, 43, 69, 95	5
87	2,2,7,7-tetramethyl-1,6- dioxaspiro[4.4]nona- 3,8-diene ^a	IV	1288	180	165, 43, 122, 96, 41, 123	10
88	7,7-dimethyl-6,8-dioxa- bicyclo[3.2.1]octane ^a	IV	1302	142	43, 84, 71, 41, 55, 27	50
89	hop ether ^a	III, IV	13 6 0	152	79, 107, 43, 122, 39, 41	35
90	karahana ether ^a	III, IV	1368	152	107, 41, 79, 121, 122, 43	60
91	<i>trans</i> -linalool oxide ^a	IV	1432	154	59, 43, 55, 68, 41, 94	20
92	humuladienone	III	1952	220	96, 138, 41, 109, 67, 82	10
93	caryophyllene epoxide ^a	IV	1966	220	41, 69, 81, 93, 107, 95	18
94	humulene epoxide I ^a	III, IV	1972	220	93, 43, 41, 80, 121, 55	125
95	humulene epoxide II ^a	III, IV	2011	220	109, 43, 41, 138, 67, 55	40
96	linalool	IV	1541	154	41, 71, 43, 93, 69, 55	470
97	β-fenchyl alcohol ^a	IV	1569	154	81, 80, 43, 69, 41	40
98	terpinen-4-ol	IV	1587	154	71, 43, 55, 41, 93, 111	15
99	α-terpineol	IV	1677	154	59, 93, 43, 121, 81, 41	40
100	citronellol ^a	IV	1755	156	41, 69, 55, 67, 95, 81	10
101	geraniol ^a	IV	1833	154	41, 69, 93, 55, 84, 111	5
102	caryolan-1-ol ^a	v	2019	222	111, 55, 41, 123, 81, 95	25
103	nerolidol ^a	IV	2021	222	41, 69, 43, 55, 93, 71	25
104	junenol ^a	III	2028	222	109, 41, 161, 81, 149, 55	5
105	epicubenol ^a	IV	2039	220	119, 161, 204, 105, 41, 43	20
106	caryophyllenol ^a	III	2033	220	43, 41, 93, 91, 135, 95	5
107	T-cadinol ^a	IV	2136	222	161, 204, 43, 81, 95, 105	45
108	humulol ^a	IV, V	2124	222	82, 43, 81, 41, 67, 93	220
109	δ -cadinol ^a	IV	2150	222	161, 43, 119, 204, 105	35
110	humulenol II ^a	IV, V	2234	222	41, 69, 82, 67, 43	1150
111	β -ionone ^a	IV	1912	192	43, 177, 41, 91, 93, 136, 77	1
112	damascenone ^a	IV	1801	190	69, 121, 41, 105, 91, 190	tr
113	<i>cis</i> -jasmone ^a	IV		164	81, 149, 164, 135, 95	10

^a Components identified for the first time in beer. All components presented in Table II were found in Spalter hops.

masked by the strongly concentrated compounds derived from the yeast metabolism as well as from Maillard reactions. It may be one of the reasons why most investigators failed to prove the existence of hop aroma constituents in beer. The six LSC fractions were concentrated to a definitive volume and examined by GLC and capillary gas chromatography-mass spectrometry. Trace constituents were isolated and enriched by preparative gas chromatography. The results are summarized in Tables I and II. It can be seen that the esters are cleanly separated into fractions I-III and the alcohols and lactones are transferred into fraction V. The free fatty acids are retained on the aluminum oxide. The fraction IV contained terpenoids and sesquiterpenoids and possessed an intensive, pleasant, hoppy aroma. Neither terpene and sesquiterpene hydrocarbons, nor methyl esters, characterized in hop oil, were detected in the aroma concentrate. Some of the methyl esters identified in hops like methyl

dec-4-enoate, methyl deca-4,8-dienoate, and methyl nonenoate are obviously transesterified to the ethyl esters by the yeast. This has been proved with model systems. Besides transesterification we observed reduction of ketones to secondary alcohols and adsorption of lipophilic aroma constituents by the yeast (Friese, 1977).

The LSC fraction IV contained most of the aroma constituents derived from hops. Figure 1 shows a gas chromatogram of the strongly concentrated sample. It can be seen that many oxygenated terpenes and sesquiterpenes are strongly concentrated compounds which have been found in hops. Some of the identified constituents are presented in Table II. Five cyclic ethers (compounds 86–90), first identified by Naya and Kotake (1967, 1968) in Japanese hops, are summarized in Figure 2. Some of them possess flowery notes and are hops aroma contributing constituents. Sesquiterpenoids derived from humulene are shown in Figure 3. Humuladienone (92) was first identified by Shimazu et al. (1974) in a Japanese beer. Humulene epoxide I, humulene epoxide II, linalool, humulol, and humulenol II are strongly concentrated components. All aroma compounds shown in Table II have been identified in Spalter hops (Tressl et al., 1978) and most of them increase during the storage of hops. Damascenone and β -ionone have been found in a very low trace range. Both are important constituents and have thresholds of 0.009 and 0.008 ppb, respectively. All constituents, presented in Table II, have been characterized in some other German beers of the type "Pilsener", but in much lower concentrations (Friese, 1977).

The effect of kettle hop boiling and the influence of the yeast strain on hop aroma constituents in beer are still unknown.

ACKNOWLEDGMENT

The authors thank Y. Naya, Osaka, for the reference samples of cyclic ethers.

LITERATURE CITED

Buttery, R. G., Black, D. R., J. Food Sci. 32, 414 (1967). Drawert, F., Tressl, R., Tech. Q., Master Brew Assoc. Am. 9, 72 (1972).

Friese, L., Thesis, TU Berlin, 1977.

Naya, Y., Kotake, M., Tetrahedron Lett., 1715 (1967).

Naya, Y., Kotake, M., Tetrahedron Lett., 1645 (1968).

Sandra, P., Cerevisia 1, 37 (1976).

Shimazu, T., Hashimoto, N., Kuroiwa, Y., ASBC Proc. 9, 7 (1974).

- Tressl, R., Friese, L., Fifth International Ferm. Symposium, Berlin, 1976, p 381.
- Tressl, R., Friese, L., Fendesack, F., Köppler, H., J. Agric. Food Chem. 26, 000 (1978).
- van Straten, S., de Vrijer, F., TNO Report R 4030, Central Institute for Nutrition and Food Research TNO, Zeist, The Netherlands, 1973.

Received for review April 10, 1978. Accepted August 14, 1978. This work was supported by Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V., Köln.

Studies of the Volatile Composition of Hops during Storage

Roland Tressl,* Lothar Friese, Friedrich Fendesack, and Hans Köppler

One hundred and forty constituents of Spalter hops (among them: terpenes, sesquiterpenes, esters, ketones, aldehydes, alcohols, lactones, ethers, and fatty acids) have been characterized and (semi)quantified by means of distillation-extraction, liquid-solid chromatography, and capillary gas chromatography-mass spectrometry. After a storage period of 3 years, the changes of individual components were determined. Terpene and sesquiterpene hydrocarbons are decreased by polymerization and oxidation. To some extent they are transformed into hydrophilic components such as epoxides, alcohols, and aldehydes, which may be easily transferred to beer. In addition, components such as aldehydes and fatty acids, which are known as off-flavor constituents in beer, are formed.

More than 150 volatile constituents in different varieties of hops were characterized by several authors (Buttery et al., 1963, 1965; Naya and Kotake, 1968, 1970, 1971; Tressl and Friese, 1978b). According to Naya and Kotake (1972) hops can be divided into myrcene-rich varieties and into humulene-rich varieties. Varieties like Spalt, Hallertauer Mittelfrüh, and Saaz belong to the second group and are known to possess a desirable fine aroma. To date many investigators failed to prove the existence of hops aroma constituents in beer. In 1967, Buttery et al. identified ethyl dec-4-enoate and ethyl deca-4,8-dienoate in an American beer. Drawert and Tressl (1972) characterized a few hops aroma constituents in a German beer. According to Guadagni et al. (1966), hop oil possesses a very low threshold. One part per billion of the oxygenated fraction of hop oil can be perceived (by the senses). In German beer with a typical hoppy aroma, we characterized 30 to 40 hop flavor constituents by GC-MS (Tressl and Friese, 1976). Most of these constituents are only trace compounds in the original hops. They are derived from major components by chemical or biochemical reactions during processing. Therefore it is important to know about the changes of individual aroma constituents during storage and processing of hops. By means of LSC-GC-MS we characterized and (semi)quantified more than 120 volatile constituents of Spalter hops and followed the changes of individual compounds after a storage period of 3 years. The amounts of terpene and sesquiterpene hydrocarbons decreased considerably, while the amounts of aldehydes, ketones, alcohols, fatty acids, and oxygenated terpenes and sesquiterpenes increased.

MATERIALS AND METHODS

Sample Preparation. Five kilograms of Spalter hops, harvested in 1974, were stored at 0 °C in a dark room. One hundred grams of homogenized hops was mixed with 1200 mL of distilled water, and the hop oil constituents were isolated by means of distillation-extraction with pentane-ether (1:1) for 4 h (Krüger and Baron, 1975). The extract was dried over Na_2SO_4 , then concentrated to a volume of 2 mL and separated by adsorption chromatography.

Adsorption Chromatography. One hundred microliters of hop oil were separated on 5 g of silica gel (activity II-III, Merck 7734, column 200×0.9 mm i.d.). The hydrocarbons were eluted with 100 mL of (I) pentane, the oxygenated fraction with 100 mL of ether. Both samples were concentrated using a Vigreux distillation column and examined by GLC. The oxygenated components were cleanly separated on silica gel. Six fractions (40 mL each) were eluted with solvents of increasing

Lehrstuhl für Chemisch-technische Analyse der Technischen Universität Berlin und Forschungsinstitut für Chemisch-technische Analyse im Institut für Gärungsgewerbe und Bio-technologie, D-1000 Berlin 65, Seestrabe 13, Germany.